An attempt to lower sources of systematic measurement error using Hierarchical Generalized Linear Modeling (HGLM).

نویسندگان

  • George D Sideridis
  • Ioannis Tsaousis
  • Athanasios Katsis
چکیده

The purpose of the present studies was to test the effects of systematic sources of measurement error on the parameter estimates of scales using the Rasch model. Studies 1 and 2 tested the effects of mood and affectivity. Study 3 evaluated the effects of fatigue. Last, studies 4 and 5 tested the effects of motivation on a number of parameters of the Rasch model (e.g., ability estimates). Results indicated that (a) the parameters of interest and the psychometric properties of the scales were substantially distorted in the presence of all systematic sources of error, and, (b) the use of HGLM provides a way of adjusting the parameter estimates in the presence of these sources of error. It is concluded that validity in measurement requires a thorough evaluation of potential sources of error and appropriate adjustments based on each occasion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Attempt to Lower Sources of Systematic Measurement Error 1 Running Head: AN ATTEMPT TO LOWER SOURCES OF SYSTEMATIC MEASUREMENT ERROR An Attempt to Lower Sources of Systematic Measurement Error Using Hierarchical Generalized Linear Modeling (HGLM)

The purpose of the present studies was to test the effects of systematic sources of measurement error on the parameter estimates of scales using the Rasch model. Studies 1 and 2 tested the effects of mood and affectivity. Study 3 evaluated the effects of fatigue. Last, studies 4 and 5tested the effects of motivation on a number of parameters of the Rasch model (e.g., ability estimates). Results...

متن کامل

Modeling local item dependence with the hierarchical generalized linear model.

Local item dependence (LID) can emerge when the test items are nested within common stimuli or item groups. This study proposes a three-level hierarchical generalized linear model (HGLM) to model LID when LID is due to such contextual effects. The proposed three-level HGLM was examined by analyzing simulated data sets and was compared with the Rasch-equivalent two-level HGLM that ignores such a...

متن کامل

Spatial modeling of data with excessive zeros applied to reindeer pellet‐group counts

We analyze a real data set pertaining to reindeer fecal pellet-group counts obtained from a survey conducted in a forest area in northern Sweden. In the data set, over 70% of counts are zeros, and there is high spatial correlation. We use conditionally autoregressive random effects for modeling of spatial correlation in a Poisson generalized linear mixed model (GLMM), quasi-Poisson hierarchical...

متن کامل

hglm: A Package for Fitting Hierarchical Generalized Linear Models

We present the hglm package for fitting hierarchical generalized linear models. It can be used for linear mixed models and generalized linear mixed models with random effects for a variety of links and a variety of distributions for both the outcomes and the random effects. Fixed effects can also be fitted in the dispersion part of the model.

متن کامل

Formulating latent growth using an explanatory item response model approach.

In this paper, we present a way to extend the Hierarchical Generalized Linear Model (HGLM; Kamata (2001), Raudenbush (1995)) to include the many forms of measurement models available under the formulation known as the Random Coefficients Multinomial Logit (MRCML) Model (Adams, Wilson and Wang, 1997), and apply that to growth modeling. First, we review two different traditions in modeling growth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied measurement

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 2014